Blocked United Algorithm for the All-Pairs Shortest Paths Problem on Hybrid CPU-GPU Systems
نویسندگان
چکیده
This paper presents a blocked united algorithm for the allpairs shortest paths (APSP) problem. This algorithm simultaneously computes both the shortest-path distance matrix and the shortest-path construction matrix for a graph. It is designed for a high-speed APSP solution on hybrid CPU-GPU systems. In our implementation, two most compute intensive parts of the algorithm are performed on the GPU. The first part is to solve the APSP sub-problem for a block of sub-matrices, and the other part is a matrix-matrix “multiplication” for the APSP problem. Moreover, the amount of data communication between CPU (host) memory and GPU memory is reduced by reusing blocks once sent to the GPU. When a problem size (the number of vertices in a graph) is large enough compared to a block size, our implementation of the blocked algorithm requires CPU GPU exchanging of three blocks during a block computation on the GPU. We measured the performance of the algorithm implementation on two different CPU-GPU systems. A system containing an Intel Sandy Bridge CPU (Core i7 2600K) and an AMD Cayman GPU (Radeon HD 6970) achieves the performance up to 1.1 TFlop/s in a single precision. key words: all-pairs shortest paths problem, path construction, FloydWarshall algorithm, blocked algorithm, hybrid CPU-GPU systems
منابع مشابه
General Parallel Computation on Commodity Graphics Hardware: Case Study with the All-Pairs Shortest Paths Problem
Programmability and IEEE-standard floating point arithmetic makes the latest commodity graphics processors (GPUs) an attractive platform for general parallel computing. In this paper we describe the implementation of the Warshall-Floyd algorithm on a class of GPUs. All-pairs shortest paths problem is relevant to many practical applications. Efficient GPU implementation of the Warshall-Floyd alg...
متن کاملSolving path problems on the GPU
We consider the computation of shortest paths on Graphic Processing Units (GPUs). The blocked recursive elimination strategy we use is applicable to a class of algorithms (such as all-pairs shortest-paths, transitive closure, and LU decomposition without pivoting) having similar data access patterns. Using the all-pairs shortest-paths problem as an example, we uncover potential gains over this ...
متن کاملAll-pairs Shortest Path Algorithm based on MPI+CUDA Distributed Parallel Programming Model
In view of the problem that computing shortest paths in a graph is a complex and time-consuming process, and the traditional algorithm that rely on the CPU as computing unit solely can't meet the demand of real-time processing, in this paper, we present an all-pairs shortest paths algorithm using MPI+CUDA hybrid programming model, which can take use of the overwhelming computing power of the GP...
متن کاملA Fine Tuned Hybrid Implementation for Solving Shortest Path Problems using Bellman Ford
In this paper a hybrid implementation for Bellman-Ford to solve shortest path problems is proposed using OpenCL. Here first parallel implementation for Bellman-Ford for single source shortest path (SSSP) problem and all pair shortest path (APSP) are analyzed on CPU and GPU and based on this analysis work is divided among CPU and GPU and hybrid implementation is done. As proper resource utilizat...
متن کاملOptimizing Sparse Matrix-Matrix Multiplication on a Heterogeneous CPU-GPU Platform
Sparse Matrix-Matrix multiplication (SpMM) is a fundamental operation over irregular data, which is widely used in graph algorithms, such as finding minimum spanning trees and shortest paths. In this work, we present a hybrid CPU and GPU-based parallel SpMM algorithm to improve the performance of SpMM. First, we improve data locality by element-wise multiplication. Second, we utilize the ordere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 95-D شماره
صفحات -
تاریخ انتشار 2012